
Enhanced Mesh-Connected Computers for Image
Processing Applications'

Mounir Hamdi
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Email : hamdi@cs.ust.hk

Abstract

The Reconfigurable Array with Spanning Optical
Buses (R A S O B) has recently been introduced as an
efficient enhanced mesh-connected parallel computer.
RASOB combines some of the advantage characteris-
tics of reconfigurable meshes and meshes with optical
pipelined buses. In this paper, we use this computing
model for the efficient design of fundamental image
processing applications. In order t o fully assess the po-
tential of R A S O B , the image processing applications
chosen range from low-level processing (convolution,
histogramming) where only neighborhood communi-
cations are need to high-level processing (connected
component labeling, computational geometry) where
global communications are needed.

1 Introduction
Numerous parallel architectures have been pro-

posed for general purpose computing and in partic-
ular for image processing applications. Among the
various proposed architectures, reconfigurable archi-
tectures are shown to be the most attractive. Re-
configurable architectures are attractive because they
provide alternatives to completely connected systems
a t lower implementation costs. Since optical inter-
connects can offer many advantages over its ekctronic
counterpart including high connection density and re-
laxed bandwidth-distance product, they will soon be a
viable alternative for multiprocessor interconnections
[a , 51. This paper reviews the Reconfigurabde Array
with Spanning Optical Buses (R A S O B) architecture
that provides flexible reconfiguration as well as rich
connectivities a t low hardware and control complexi-
ties [13]. Then, we use this architecture for the effi-
cient implementation of fundamental image processing
algorithms.

A major difference between the RASOB a.rchitec-
ture and other two dimensional array with either op-

tical or electronic buses [3 , 41 is that there is a direct
connection between any two processors. More specifi-
cally, in a RASOB, a processor a t row i and column
j can send a message, without buffering and address
decoding a t any intermediate processor, t o a processor
a t row k and column 1, even if i # k and j # d . Such a
direct connection between these two processors at dif-
ferent rows and different columns can be established
by setting an electro-optical switch [l] that intercon-
nects the row i and column 1. We will refer to the
operation of setting switches as hardware reconfigura-
tion in a R A S O B .

Moreover, the RASOB architecture also takes ad-
vantage of the two important properties of the optical
transmissions, namely, unidirectional propagation and
predictable unit propagation delay. More specifically,
the processors in a RASOB can be programmed to
send and receive messages under synchronized control,
such that a connection between a source and a desti-
nation is established by letting the source send a mes-
sage at a specific point in t ime and letting the desti-
nation receive the message at another specific point in
t ime [3, 61. We refer to this type of reconfiguration as
software reconfiguration. Because some of the recon-
figuration is done in software, the complexity of both
hardware and control required for reconfiguration can
be kept low. However, despite of its low control and
hardware complexity, the proposed RASOB architec-
ture provides flexible reconfiguration that leverages
the high communication bandwidths available in op-
tical interconnects and is thus promising for efficient
parallel implementation of many communication in-
tensive algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 describes the RASOB architecture, in which
both software and hardware reconfigurations are dis-
cussed. In section 3 , some fundamental image pro-
cessing applications are implemented on RASOB t o
high-light the efficiency of such architectures in the
execution of these communication intensive applica-
tions. Finally, we conclude the paper in Section 5.

'This research work was supported in part by the Hong
Kong Research Grant Council under the grant RGC,/HKUST
100/92E.

375
0-8186-7134-3/95 $04.00 0 1995 IEEE

2 Architectural Model
The RASOB architecture is similar to the array

structure described in [8]. A main difference is that in
this architecture, messages are sent and received ac-
cording to specific timing requirements. This makes
this architecture suitable for SIMD applications. On
the other hand, the structure in [8] employs an ad-
dressing mechanism which supports MIMD applica-
tions a t higher hardware and control complexities.
Figure 1 and Figure 2 illustrates the architecture of
an RASOB. As shown in Figure 1, there are n folded
row buses and n folded column buses interconnecting
the processor array. Each processor has a transmit-
ting interface to the upper segment of a row bus, and
two receiving interfaces to the lower segment of the
row bus and the right segment of a column bus, re-
spectively.

column bus I column bus 2 culumn bus 3

r w bus I

row bur 2

row bus n

0 processors 0 switches (see (b))

Figure 1: The architecture of RASOB

lnim il column hus

I I I .

Figure 2: A switch interconnecting a row and a column
bus.

A distinct architectural feature of the RASOB is
that a 2 x 2 electro-optical switch is placed at the
intersection of a row and a column bus, as shown in
Figure 2. When the switch is set to straight, a message
arriving along a row bus will continue propagating on
the row bus; Otherwise, the message will be swztched
to the column bus instead. During a specific period,

all the switches at a given row are set to straight and
messages propagate only on a row bus. As a result,
processors a t a row communicate with each other at
the same row. This type of communications is referred
to as "Row communications" and the period during
which row communications is accomplished is referred
to as a Row phase.

A processor may also communicate with a proces-
sor a t a different row, which may or may not be at
a different column. This type of communications is
referred to as "Column communications" and is ac-
complished by switching the message from a row bus
to the desired column bus during a period called Col-
umn phase. In doing so, the switches are set to "cross"
for the duration of the message and then changed back
to the straight state.

Changing the state of the switches in a column
phase is an example of what we called hardware recon-
figuration. As a contrast] software reconfiguration in
this paper refers to the programming of the processors
so that they will send and receive messages at some
specific points of time. In the following sections, we
first illustrate software and hardware reconfiguration
and then discuss both hardware and control complex-
ities of an RASOB as well as its connectivities.

2.1 Software Reconfiguration
In a row phase, each row bus operates indepen-

dently from the others so it is sufficient to describe
just one row bus (e.g. row bus r) , as shown in Fig-
ure 3 . In the following presentation, we will denote
the processors a t row T from left to right by p (r , l) ,
p (r , 2) , ... and p (r , n) , respectively.

train loading -
train unloading -

Figure 3: Train loading/unloading on a row bus

There are two important optical transmission
properties, namely, unidirectzonal propagatzon and
predtclable propagatzon d e l a y of the optical signals,
that make concurrent access of an optical bus possi-
ble. More specifically, with an appropriate spatial sep-
aration between the neighboring processors, message
collision can be avoided even when the processors are
transmitting messages concurrently [3 , 61. In the fol-
lowing discussions, we assume that each processor on
a row bus is separated in time by D = bw+b (seconds)
from its neighbors, where b is the the maximal length
of a packet in bits, w is the optical pulse width (or bit
duration) in seconds, and b > 0 is used as guard bands
to tolerate synchronization error to a certain degree.

376

This temporal separation can be achieved by separat-
ing the two neighboring transmztter znterfaccs on the
upper segment as well as the recezver znterfaces on the
lower segment of a row bus with a fiber length D x c,
where c is the speed of light in the fiber, as shown in
Figure 3. Without loss of generality, we assume that,
the length of the folded part, which is the separation
of the transmitter and receiver interface of p (~ , I) , is
also made equivalent to D.

We may use the train loading/unloading model to
describe the operations in a row phase. Let us imagine
that a t the beginning of a row phase, a tram (or mo-
torcade) of n cars is originated at the rightrnost end
of the upper segment of the row bus. Each car can
be regarded as an empty packet slot with a duration
of D and is numbered 1 through n from left to right.
During a row phase, the switches that connect, the row
bus with column buses are in the "straight" state so
that the train will run through the lower segment of
the row bus. A simple assignment of the cars is to let
processor p (r , 1) use car 1 for sending its packet, let
p(r , 2) use car 2 for sending its packet and so on.

With this assignment of the cars, the time when
p (r , i) may transmit its packet, relative to thLe begin-
ning of the row phase, is given by

RowSend[(r,i)] = (i - l) D + (n - - i) D = (n - l) D (1)

As a result, all processors will be transmitting simul-
taneously because the transmitting time doe55 not de-
pend on i . In addition, a receiving processor ciin deter-
mine the exact time when the car carrying the packet
will arrive a t its receiver interface. More specifically,
if processor p(r , i) is expecting a packet sent by p (r , j),
it can calculate the time it should pick up the packet
as below,

RowRec[(r , i) - (r , j)] = (n - l) D + (i + j - l)D
= (n + i + j - 2) D (2)

By placing all the processors under a synchronized
control and let each processor send and receive a t spe-
cific points of time as in Eqs. 1 and 2 , the row bus
can be reconfigured into a variety of interconnection
patterns.

2.2 Hardware Reconfiguration

If a processor needs to communicate with another
processor at a different row, it has to send a packet in
a column phase. The train loading/unloading model
used previously is also useful in illustrating the princi-
ples involved in column communications. More specif-
ically, we will let car 1 of the train make a turn, from
the lower segment of a row bus, onto column bus n ,
car 2 make a turn onto column bus (n - l) , and so on.
For simplicity, we assume that the switches are placed
near the receiver interfaces so that the propagation
delay between a switch and its nearby receiver is al-
most negligible. This also implies that the switches
are placed D apart from each other.

Similar to Eq. 2, we can determine the time that
car k arrives at switch (n - k + 1) to be

SwitchATvl[(p, R - k + 1) + (7*, k)] = (2n - l)D (3)

Since the right side of the equation does not contain k,
every car arrives a t its turning point at the same time.
Therefore, one may set the switches on a row bus to
"cross" simultaneously and by doing this, the n pack-
ets in the train are switched onto their respective des-
tination columns, one packet per each column. This
arrangement implies that during a Column phase, two
or more processors a t the same row can not send pack-
ets destined t o the same column.

If p (i , j) needs to communicate with p (r , k) where
T # i, p (i , j) will have to transmit (or load) a packet
into car (n - k + 1). We can determine the time for
p (i , j) to transmit its packet to be

ColSend[(i , j) - (T , k)] = (n - k) D + (n - j) D
= (an- j - k) D (4)

By separating the adjacent row buses by D , a col-
umn bus will look like a row bus that is turned 90"
anti-clockwise after the packets are switched. More
specifically, that every row bus switches a packet onto
a column bus a t the same time is similar to the case
where packets are transmitted to a row bus simulta-
neously. With as much as D separation between every
two row buses, there will be again a train of n cars,
each carrying a packet, formed on the left segment of
a column bus. Hence, we can determine the time for
p (r , k) to pick up the packet a t the its receiver inter-
face on the column bus, which is sent by p (i , j) , to
be

2.3 Connectivity and Complexity

Software reconfiguration can be performed with
little control overhead because each of the above equa-
tions (1 to 5) involves simple arit,hmetic calculations.
In addition, the hardware complexity of the proposed
architecture is low because each processor uses only
one two-state 2 x 2 switch and has only one transmit-
ter. Although two receiver interfaces are needed by
each processor, a single high-speed electronic receiv-
ing circuit may be shared among these two interfaces.
As a comparison, most mesh-based reconfigurable ar-
chitectures would require at least an equal number of
switches having four or more states and four 1 /0 in-
terfaces per each processor [7].

Despite of the low control and hardware complexi-
ties, the RASOB provides strong connectivities due to
the following characteristics. First, a direct connection
between any two processors can be established. Sec-
ond, reconfiguration is flexible as one may interleave
Row and Column phases in many ways to provide com-
munication bandwidth required by an application. Fi-
nally, because only a portion of optical power is tapped

377

off a t each receiver interface, mult icast ing can be sup-
ported simply by programming multiple receivers to
receive at different points of time during the same
phase. Noting that one-to-one and broadcast are spe-
cial cases of multicasting, we may summarize the com-
munication capability of the RASOB below:

All processors a t row i can multicast to the
processors at the same row a t the same time;
and such an row-to-row multicasting can be per-
formed a t all n rows simultaneously.

All processors at column j can multicast to the
processors a t the same column at the same time;
and such an column-to-column multicasting can
be performed a t all n columns simultaneously.

p(i, j) can multicast to several processors a t any
column k and such a processor-to-column multi-
casting can be performed by all the n3 processors
a t the same time.

Note that while the first two items on the list
alone mean that the RASOB is at least as power-
ful as any mesh with row and column buses, the third
item clearly shows that the RASOB has a stronger
connectivity than other meshes with row and column
buses.

3 Parallel Image Processing
Algorithms

Although the RASOB has a strong connectivity,
it , like many practically scalable architectures, has
a weaker connectivity than a completely-connected
network. The capabilities as well as restrictions of
the architecture makes it an interesting yet challeng-
ing task to design efficient algorithms. In this Sec-
tion, we present the design and analysis of various
fundamental algorithms in image and vision process-
ing. Image and vision computing is usually modeled
as a three-stage process: low-level, intermediate-level.
and high-level. In the following subsections, we will
present two-dimensional convolution and histogram
operations (low-level), connected component labeling
(intermediate-level), and extreme point identification
and diameter computation (high-level).

3.1 Convolution

Convolution is frequently used in various image
processing applications including in the design of lin-
ear filters (applied in noise cleaning and quality en-
hancement) as well as in edge detection. The two-
dimensional convolution y i , j can be expressed through
the formula:

k-lk-1

Y i , j = c W , , t Z i - s , j - t
s=o t = O

where k’ is the size of the convolution kernel W (k x k)
and k is odd.

Two-dimensional convolution has been shown to
be optimal on meshes [14]. M . Maresca and H . Li had
also shown the mesh embedding in polymorphic torus
architecture [15]. The algorithms they used can also
be applied in R A S O B , which takes O (k 2) communi-
cation phases and O (k 3) computation time. However,
these algorithms do not fully utilized the connectiv-
ity of RASOB. In order to make a better utilization,
we propose another algorithm here, which takes k + 1
communication phases, and with O (k 2) computation
time on each processor.

We assume that the image X of size n x n pixels is
stored in the RASOB of size n x n, with each processor
storing one pixel. Initially, the convolution kernel W
of size k x k is stored in an array-form inside each PES.

The algorit!hm of convolution is presented as fol-
lows:

Each P E sends its element to its (k - 1)/2 left
neighboring PES and to its (k - l) / 2 right neigh-
boring PES on the same row as illustrated in Fig-
ure 4.

Each P E now have k elements. For each PE,
broadcast all k elements to its neighboring (k -
1)/2 upper PES and to its (k - 1)/2 lower PES in
the same column.

Each PE performs the computation locally (to
perform the above formula).

Figure 4: Step 1 of the algorithm in case of n = 6 and
k = 3.

Theorem 1 The convolut ion can be done using k + 1
communica t ion phases .

Proof: It is not difficult to prove the above theo-
rem. Step 1 can be done by one row phase. In step 2,
each P E has to send k elements. So it takes k co lumn
phases. Step 3 involves local computation, which it
can be easily seen that the formula requires k z addi-
tions. Thus, k + 1 communication phases and O (k 2)
computation time are required.

3.2 Histogramming

The histogram of an image i s a one-dimensional
array h[i] , i = 0 , . . . , L-1, such that h(i) is the number

378

of pixels with value i. Histogram algorithms had been
well developed in mesh, reconfigurable mesh, tree or
hypercube. The algorithm on RASOB is similar to
the algorithm implemented on a reconfigurable mesh,
which takes O(L1ogn) time [15].

If processor
p(;c,y) contains the value i, it makes a signal of 1;
otherwise, makes a signal of 0. Then, perforni a sum

The algorithm works as follows.

011 all the signals from the PES will
as detailed below.

Algorithm

f o r (i = 0; i < L ; i + +)

for each P E
{

if (value == i)

else

h[i] = sum(V0TE);

VOTE

VOTE

1
Theorem 2 T h e t i m e complexzty
o n a n RASOB is O(L1ogn).

get the h[i] values

= 1;

= 0;

of h i s togramming

Proof: The complexity is followed by the fact that
the complexity of performing a sum on the whole
RASOB is O(log n). Executing the loop L times gives
a O(L1ogn) time of the whole histogram algorithm.

3.3 Connected Component Labeling

Connected component labeling in digital images
takes as an input an array of pixels Xi , j (where
each pixel can be binary, gray level, or coloi:), with
i , j = 1 , 2 , 3 , . . . , n , and produce as an output an array
of labels L i , j , such that all the elements of 1: corre-
spond to a connected component if they are directly
connected or if they are directly connected to a pix-
els belonging to the same connected component. Two
pixels are directly connected if they are adjacent [i.e.,
a t address (i , j) and (i , j f l) or (i , j) and (ik l . j)] and
have the same value (gray level or color). The labels
are assigned to the connected components according
to the following rule: each pixel is given a label cor-
responding to the least address (in row major order)
of the pixels belonging to its component. Originally,
each PE has the label of its own address.

Some research on the implementation of con-
nected component labeling on Polymorphic torus ar-
chitecture has been shown in [9], which takes O(1ogn)
time complexity. However, this complexity carries
a large constant term. A second one was proposed
in [15], with a smaller constant term, but with a
O(log2 n) time complexity. The best one so far is [ll],
which takes constant time. This algorithm takes two
advantages of reconfigurable bus networks. The first
one is that each P E can set the connection of its four

ports to its four neighboring PES, and hence it can
break down the whole architecture in any kinds of sub-
buses as it requires. Next, each PE can read all bus
lines through its input buffers, and can write on the
bus whenever that port is connected. Such technical
features are not found on RASOB, and thus cannot
be directly applied.

In this section, we proposed a O(1ogn) time com-
plexity algorithm for connected component labeling on
RASOB, with a small constant and some local com-
putation. The idea of our algorithm follows that of
the mesh algorithm suggested in [lo], with time com-
plexity O(n) for a n x n image on n x n PES. The
improvement of the time complexity on RASOB is
due to its strong connectivity.

The algorithms follows a bottom-up, divide-and-
conquer strategy in that it applies the same proce-
dure to larger and larger regions, starting from single
pixel regions and increasing the size up to the entire
image. Pairs of regions are combined to form larger
regions. The combination process happens both hor-
izontally and vertically. Vertical combinations merge
two square regions of size h x h to form a rectangle
of size 2h x h , whereas horizontal combinations merge
two rectangles of size 2h x h to form a square of size
2h x 2h as shown in Figure 5 .

F h - 2h+

0 0 0 0 TI: T 2h 0 0 0 0
2h

l o 0 l o 0 0 0

Figure 5 : Image partitioning in connected component
labeling.

The algorithm starts by examining all the pixels
in parallel. Single pixels are considered square regions
of size 1 and therefore the first combination is vertical,
to form a rectangle of size 2 x 1. Then, horizontal and
vertical combinations repeat alternatively until the en-
tire image is reached. In each combination, either hor-
izontal or vertical, two procedures will be carried out,
namely C o m b i n e () and Update(). The C o m b i n e () and
Update() routines are described as follows.

C o m bz n e 0:
For each pair of PES crossing the boundary of each

region to be merged, if they have the same value (gray
level or color), a packet is created in both PES. The
packet is in the form of (large-label, small-label) where
large-label is the label of the PE with a larger label,
and small-label is the label of the other PE.

If they do not have the same value, they do noth-

379

ing, i.e., create n o packet.
/* end of Combine() */

So far, it is checked completely for any connected
component crossing t,he boundary. We need now to
update the labels to the whole region, by the packet
just created in the Combine() routine:

Update(): (for vertical combination)

1. Each P E on the boundary will now broadcast its
own packet (if any) to all PES on the same column
in its own region as illustrated by Figure 6.
/* Now, all PES in the same column of the same
region will contain the same packet. */

2. Each P E broadcasts its own packet to all other
PES in the same row of the same region.
/* Now, each PE will receive a t most L different
packets, where k is the length of the boundary.
*/

3. Locally, each P E checks its own label against the
packets it just received by the following rule:
for each different packet (first-label, second-label)
received,
if (own-label == first-label)
then
own-label = second-label;

/* end of Update() */

Figure 6: Directions of broadcasts to cover the whole
region.

The case of horizontal combination is similar, just
change the row phase to column and the column to
row.

Now, the whole region is updated, thus can start an-
other combination of a larger area.

After one vertical and one horizontal combination,
the size of region will be multiplied by 4, i.e. from
h x h to 2h x 2h. The number of such iteration is
logn. (h = 1 , 2 , 4 , 8 , . . . , ! I) .

Thus, the whole pseudocode of the algorithm can
be presented as follows:

f o r (h = 1; h < lgn; h. + +)
i

/* Vertical Combination */
Combine();
Update() ;
/* Horizontal Combination */
Combine();
Update();

Theorem 3 Connected component labeling in an
RASOB can be done in O(1ogn) time.

Proof: Combine() procedure involves only one com-
parison for each P E on the boundary, and it requires
one communication phase (either column or row, de-
pending on vertical or horizontal Combination). On
the other hand, Update() procedure requires one col-
umn phase for step 1 and one row phase for step 2
for vertical combination. (In case of horizontal com-
bination, one row phase for step 1 and one column
phase for step 2). Notice that this can be done simul-
taneously for each region. Step 3 only involves local
computations. The worst case of the number of lo-
cal computation (comparison between own-label and
label in packet received) in this step is IC. However,
in most images, adjacent pixels usually has the same
value, hence adjacent packets in the boundary usually
are the same, which greatly reduced the number of
different packets in each combination. Besides, some
of the pairs on the boundary may not have the same
value. thus create no packet. Thus, the number of
computation will usually be less than k.

Therefore, 3 communication phases are required
in each combination, with at most IC computations,
where k is the length of the boundary at that combi-
nation. One vertical and one horizontal combination
together form one iteration. logn iterations are re-
quired to reach the entire image. Thus, in conclusion,
6 x logn communication phases and a t most n com-
putations are required for the whole connected com-
ponent labeling algorithm on an RASOB.

3.4 Extreme Point Identification

The extreme points of a set of processors S are the
corners of the smallest convex polygon containing S .
They basically delimit the convex hull of the set; p(i, j)
is an extreme point of S if hull(S) f hull(S - p (i , j))

Our algorithm described below follow closely the
extreme point identification algorithm for Polymor-
phic torus [15]. The input to the algorithm is a binary

380

image S i , j , with i, j = 1,2,. . . n, stored one pixel per
processor in an n x n RASOB. At the end of the al-
gorithm. p(l , m) is equal to l if p (l , m) is an extreme
point of S. The algorithm is divided in two sections,
the first is for the left extreme points (LEP), situated
on the left side of S, and the second is for the right
extreme points (REP), situated on the right side of
S. We will examine only the first section, concerned
with the LEPs, considering that the REP sectmion can
be organized in an analogous way.

The first part of the algorithm for finding LEPs
is to identify all possible left extreme points (PLEPs),
which are the leftmost PES having value 1 in each
row. The second part is to discard those PLEPs
which are not true left extreme points. The method
to do this is based on some mathematical theories.
Here, we just give some basic ideas. It is done by
computing, for each P L E P i , of row i, the angles
Ai,j, i = 0,1, . . . , n-1, between the horizontal axis and
the lines connecting P L E P i and P L E P j , as shown
in Figure 7. For each P L E P i , the maximum and
the minimum among Ai,j ,j = 0 , 1 , . . . , n - 1 are then
found and their difference is computed. If the differ-
ence is less than or equal to 180 degrees, then PLEPi
is a true LEP; otherwise, it is discarded, as shown in
Figure 8.

I d PLEP4

PLEP,

Figure 7: Computation to discard PLEPs

Before presenting the algorithm for finding LEPs,
let us introduce a subroutine, find-PLEP(), which
identify all possible left extreme points (PLEP).

Lemma: The subroutine find-PLEP() can be imple-
mented using just one row communication phase.

Proof: It can be done as follows. For each PE hav-
ing a 1 in row i, sends a signal to all PES on its right
hand side in row i. The one which has an 1 but not
receiving any signal is the PLEPi.

Now, we can present the algorithm for le f t extreme
point identification.

1. Identify all PLEPs.

2. All PES corresponding to PLEPi broadca.st their

3. Each diagonal processor (p (i , i) , i = 1 , 2 , . . . , n)

coordinates to all processors in row i.

P

Figure 8: Example of true and false extreme points

broadcasts the coordinates just received to all the
processors in the same column.

4. All p (i , j) which contain the coordinates of both
PLEPi and PLEPj compute the angle A i j locally
for all i , j (i.e. for all PES).

5 . Find the maxima and minima among the A i j for
each j over all the i, and store the result in p (n , j) .

6. Perform a subtraction between the two values just
received in p (n , j) locally.

7. The result is sent to the original position where
P L E P j has been found.

Theorem 4 The overall complexity of left extreme
point identification in RASOB is O(1).

Proof: The proof is straight forward. Step 1 takes one
row phase, by calling the subroutine find-PLEP(), as
stated in the lemma. Step 2 takes one row phase, and
step 3 takes one column phase. Step 5 takes constant
time. Step 6 can be done by one column phase. No-
tice that after step 6, p (n , j) will contain the result of
whether P L E P j is a true LEP or not. To sent back
the results to the PE containing PLEP, , one easy way
is the following. For each j, p (n , j) broacasts its result
to all PES in row j . The PE having PLEP, will know
the result, while the other PES can ignore it.

Identifying the rzghi extreme points can be done in
the same way. Thus, the overall complexity of extreme
point identification is O(l) , as stated above.

3.5 Diameter Computation

The diameter of a component is defined as the
maximum distance between two of its extreme points.
For one component, there are at most 2& extreme
points (fi LEPs and & REPS). Thus, we have to

381

compute a t most 4n distances and then find the max-
imum among them. In the following, we will present
an O(1) time algorithm for diameter computation.

Algorithm

1. Identify all extreme points; now, each row i will
have a t most two a c h e PES, which contains the
LEPi and R E A .

ordinates to all PES in row i.
2. The two active PES in row i broadcast their co-

3. P(i , i) boardcasts the coordinates it just received
(at most two) to all PES in column i.

4. Each PE computes the distances among all ex-
treme points locally and finds the maximum.

5. Find the global maximum.

Theorem 5 Diameter computation on RASOB
takes O(1) time.

Proof: The proof is also very straight forward. By
the extreme point identification algorithm introduced
in last section, step 1 can be done in constant time.
Step 2 requires one row phase, and step 3 takes a t
most two column phases.

After step 3 , p (i , j) holds a t most two LEPs and
two REPS: LEPi, LEPj, REPi and REP,. Thus,
step 4 involves a t most 6 local computations for each
PE. Step 5, of course, takes constant time. The global
maximum found in this step will be the diameter of
the component.

Thus, we can find the diameter of a n x n compo-
nent on a n x n RASOB in O(1) time.

4 Conclusion
The reconfigurable array with optical spannzng

buses (R A S O B) architecture is anticipated to become
one popular parallel architecture due to its unique
properties of optical transmission to achieve flexible
reconfiguration and strong connectivities with a low
hardware and control complexity. In this paper, we
took advantage of the unique and powerful properties
of this architecture for the design and analysis of var-
ious fundamental image processing applications. The
algorithms have been chosen to span a wide range of
communication demands to fully assess the potential
of RASOB. It was shown that most algorithms per-
form much better on an RASOB than on traditional
reconfigurable electronic meshes. This is mainly due
to the pipelining capabilities of the RASOB.

References
[l] R. Alferness, L. Buhl, S. Korothy, and R.

Tucker. Highspeed A p-reversal directional cou-

pler switch. In Photonic Switching, OSA Techni-
cal Digest, volume 13, pages 77-78, 1987.

[a] A. Guha, J . Bristow, C. Sullivan, and A. Husain.
Optical interconnections for massively parallel ar-
chitectures. Applied optics, 29(8), 1980.

[3] A. Guo et al. Array processors with pipelined op-
tical busses. Journal of Parallel and Distributed
Computing, 12(3):269-282, 1991.

141 V.P. Kumar and C.S. Raghavendra. Array pro-
cessors with multiple broadcasting. Journal of
distributed computing, 2:173-190, 1987.

[5] P. Lalwaney, L. Zenou, A. Ganz, and I. Koren.
Optical interconnects for multiprocessors: cost
performance analysis. In Proc. on Frontiers of
Mass. Para. Comp., pp 278-285, Oct. 1992.

[6] R. Melhem, D. Chiarulli, and S. Levitan. Space
multiplexing of waveguides in optically intercon-
nected multiprocessor systems. The Computer
Journal, 32(4):362-369, 1989.

[7] R. Miller, V.K.P.Kumar, D.I. Reisis, and Q.F.
Stout. Parallel computations on reconfigurable
meshes. IEEE Trans. Comp., 42:678-692, 1993.

[8] C. Qiao and R. Melhem. Time-division optical
communications in multiprocessor arrays. IEEE
Trans. Comp., 42(5):577-590, May 1993.

[9] M.C. Sheng and H. Li. Connected Conponent La-
beling Algorithm on Polymorphic Torus. Proc. of
Int ' I Computer Symposaum 1988, Taipei, Taiwan,
pp.440-443, Dec 1988.

[lo] M. Maresca, H. Li and M Lavin. Connected Com-
ponent Labeling on Polymorphic Torus Architec-
ture, In ICPP, pp.951-956, 1988.

[ll] H. M. Alnuweiri. Parallel Constant-Time Connec-
tivity Algorithms on a Reconfigurable Network of
Processors. IEEE Trans. on Parallel and Distr.
Sys., vol. 6, N o . f , pp.105-110, Jan 1995.

[12] S. S. Lin, Constant-Time Algorithms for the
Channel Assignment on Processor Arrays with
Reconfigurable Bus Systems. IEEE Trans. on
Computer-Aided Design, July 1994

[13] C. Qiao, Efficient Matrix Operations in a Recon-
figurable Array with Spanning Optical Buses. 5th
Symposium Frontiers of Massively Parallel Com-
putattons, pp. 273-280, 1994.

[14] M. Maresca and H. Li. Morphological Operations
on Mesh Connected Computers. IEEE Intl. Conf.
Computer Vision and Pattern Recognition, pp.

[15] M. Maresca and H. Li. Polymorphic VLSI Arrays
with Distributed Control. Reconfigurable Mas-
sively Parallel Computers, by H. Li and Q.F.
s tout .

299-304, 1986.

382

