
Enhanced Mesh-Connected Computers for Image 
Processing Applications' 

Mounir Hamdi 
Department of Computer Science 

Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon, Hong Kong 

Email : hamdi@cs.ust.hk 

Abstract 

The  Reconfigurable Array with Spanning Optical 
Buses ( R A S O B )  has recently been introduced as an 
efficient enhanced mesh-connected parallel computer. 
RASOB combines some of the advantage characteris- 
tics of reconfigurable meshes and meshes with optical 
pipelined buses. In this paper, we use this computing 
model for the efficient design of fundamental image 
processing applications. In order t o  fully assess the po- 
tential of R A S O B ,  the image processing applications 
chosen range from low-level processing (convolution, 
histogramming) where only neighborhood communi- 
cations are need to  high-level processing (connected 
component labeling, computational geometry) where 
global communications are needed. 

1 Introduction 
Numerous parallel architectures have been pro- 

posed for general purpose computing and in partic- 
ular for image processing applications. Among the 
various proposed architectures, reconfigurable archi- 
tectures are shown to  be the most attractive. Re- 
configurable architectures are attractive because they 
provide alternatives to  completely connected systems 
a t  lower implementation costs. Since optical inter- 
connects can offer many advantages over its ekctronic 
counterpart including high connection density and re- 
laxed bandwidth-distance product, they will soon be a 
viable alternative for multiprocessor interconnections 
[a ,  51. This paper reviews the Reconfigurabde Array 
with Spanning Optical Buses ( R A S O B )  architecture 
that  provides flexible reconfiguration as well as rich 
connectivities a t  low hardware and control complexi- 
ties [13]. Then,  we use this architecture for the effi- 
cient implementation of fundamental image processing 
algorithms. 

A major difference between the RASOB a.rchitec- 
ture and other two dimensional array with either op- 

tical or electronic buses [3 ,  41 is that  there is a direct 
connection between any two processors. More specifi- 
cally, in a RASOB, a processor a t  row i and column 
j can send a message, without buffering and address 
decoding a t  any intermediate processor, t o  a processor 
a t  row k and column 1,  even if i # k and j # d .  Such a 
direct connection between these two processors at dif- 
ferent rows and different columns can be established 
by setting an electro-optical switch [l] that  intercon- 
nects the row i and column 1. We will refer to  the 
operation of setting switches as hardware reconfigura- 
tion in a R A S O B .  

Moreover, the RASOB architecture also takes ad- 
vantage of the two important properties of the optical 
transmissions, namely, unidirectional propagation and 
predictable unit propagation delay. More specifically, 
the processors in a RASOB can be programmed to  
send and receive messages under synchronized control, 
such that  a connection between a source and a desti- 
nation is established by letting the source send a mes- 
sage at a specific point in t ime and letting the desti- 
nation receive the message at another specific point in 
t ime [3, 61. We refer to  this type of reconfiguration as 
software reconfiguration. Because some of the recon- 
figuration is done in software, the complexity of both 
hardware and control required for reconfiguration can 
be kept low. However, despite of its low control and 
hardware complexity, the proposed RASOB architec- 
ture provides flexible reconfiguration that  leverages 
the high communication bandwidths available in op- 
tical interconnects and is thus promising for efficient 
parallel implementation of many communication in- 
tensive algorithms. 

The  rest of the paper is organized as follows. Sec- 
tion 2 describes the RASOB architecture, in which 
both software and hardware reconfigurations are dis- 
cussed. In section 3 ,  some fundamental image pro- 
cessing applications are implemented on RASOB t o  
high-light the efficiency of such architectures in the 
execution of these communication intensive applica- 
tions. Finally, we conclude the paper in Section 5. 

'This research work was supported in part by the Hong 
Kong Research Grant Council under the grant RGC,/HKUST 
100/92E. 
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2 Architectural Model 
The RASOB architecture is similar to the array 

structure described in [8]. A main difference is that  in 
this architecture, messages are sent and received ac- 
cording to specific timing requirements. This makes 
this architecture suitable for SIMD applications. On 
the other hand, the structure in [8] employs an ad- 
dressing mechanism which supports MIMD applica- 
tions a t  higher hardware and control complexities. 
Figure 1 and Figure 2 illustrates the architecture of 
an RASOB. As shown in Figure 1, there are n folded 
row buses and n folded column buses interconnecting 
the processor array. Each processor has a transmit- 
ting interface to the upper segment of a row bus, and 
two receiving interfaces to the lower segment of the 
row bus and the right segment of a column bus, re- 
spectively. 

column bus I column bus 2 culumn bus 3 

r w  bus I 

row bur 2 

row bus n 

0 processors 0 switches (see (b)) 

Figure 1: The architecture of RASOB 

lnim il column hus 

I I I  . 

Figure 2: A switch interconnecting a row and a column 
bus. 

A distinct architectural feature of the RASOB is 
that a 2 x 2 electro-optical switch is placed at the 
intersection of a row and a column bus, as shown in 
Figure 2. When the switch is set to  straight, a message 
arriving along a row bus will continue propagating on 
the row bus; Otherwise, the message will be swztched 
to the column bus instead. During a specific period, 

all the switches at  a given row are set to straight and 
messages propagate only on a row bus. As a result, 
processors a t  a row communicate with each other at 
the same row. This type of communications is referred 
to  as "Row communications" and the period during 
which row communications is accomplished is referred 
to as a Row phase. 

A processor may also communicate with a proces- 
sor a t  a different row, which may or may not be at 
a different column. This type of communications is 
referred to as "Column communications" and is ac- 
complished by switching the message from a row bus 
to the desired column bus during a period called Col- 
umn phase. In doing so, the switches are set to  "cross" 
for the duration of the message and then changed back 
to the straight state. 

Changing the state of the switches in a column 
phase is an example of what we called hardware recon- 
figuration. As a contrast] software reconfiguration in 
this paper refers to the programming of the processors 
so that  they will send and receive messages at some 
specific points of time. In the following sections, we 
first illustrate software and hardware reconfiguration 
and then discuss both hardware and control complex- 
ities of an RASOB as well as its connectivities. 

2.1 Software Reconfiguration 
In a row phase, each row bus operates indepen- 

dently from the others so it is sufficient to describe 
just one row bus (e.g. row bus r ) ,  as shown in Fig- 
ure 3 .  In the following presentation, we will denote 
the processors a t  row T from left to right by p ( r ,  l) ,  
p ( r ,  2 ) ,  ... and p ( r ,  n) ,  respectively. 

train loading - 
train unloading - 

Figure 3: Train loading/unloading on a row bus 

There are two important optical transmission 
properties, namely, unidirectzonal propagatzon and 
predtclable propagatzon d e l a y  of the optical signals, 
that make concurrent access of an optical bus possi- 
ble. More specifically, with an appropriate spatial sep- 
aration between the neighboring processors, message 
collision can be avoided even when the processors are 
transmitting messages concurrently [ 3 ,  61. In the fol- 
lowing discussions, we assume that  each processor on 
a row bus is separated in time by D = bw+b (seconds) 
from its neighbors, where b is the the maximal length 
of a packet in bits, w is the optical pulse width (or bit 
duration) in seconds, and b > 0 is used as guard bands 
to  tolerate synchronization error to a certain degree. 
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This temporal separation can be achieved by separat- 
ing the two neighboring transmztter znterfaccs on the 
upper segment as well as the recezver znterfaces on the 
lower segment of a row bus with a fiber length D x c, 
where c is the speed of light in the fiber, as shown in 
Figure 3. Without loss of generality, we assume that, 
the length of the folded part, which is the separation 
of the transmitter and receiver interface of p ( ~ ,  I ) ,  is 
also made equivalent to D. 

We may use the train loading/unloading model to 
describe the operations in a row phase. Let us imagine 
that a t  the beginning of a row phase, a tram (or mo- 
torcade) of n cars is originated at the rightrnost end 
of the upper segment of the row bus. Each car can 
be regarded as an empty packet slot with a duration 
of D and is numbered 1 through n from left to right. 
During a row phase, the switches that connect, the row 
bus with column buses are in the "straight" state so 
that the train will run through the lower segment of 
the row bus. A simple assignment of the cars is to let 
processor p ( r ,  1) use car 1 for sending its packet, let 
p(r ,  2) use car 2 for sending its packet and so on. 

With this assignment of the cars, the time when 
p ( r , i )  may transmit its packet, relative to thLe begin- 
ning of the row phase, is given by 

RowSend[(r,i)] = ( i - l ) D + ( n - - i ) D  = ( n - l ) D  (1) 

As a result, all processors will be transmitting simul- 
taneously because the transmitting time doe55 not de- 
pend on i .  In addition, a receiving processor ciin deter- 
mine the exact time when the car carrying the packet 
will arrive a t  its receiver interface. More specifically, 
if processor p(r ,  i) is expecting a packet sent by p ( r ,  j),  
it can calculate the time it should pick up the packet 
as below, 

RowRec[(r , i ) - ( r , j ) ]  = ( n -  l ) D + ( i + j -  l )D 
= ( n + i + j - 2 ) D  ( 2 )  

By placing all the processors under a synchronized 
control and let each processor send and receive a t  spe- 
cific points of time as in Eqs. 1 and 2 ,  the row bus 
can be reconfigured into a variety of interconnection 
patterns. 

2.2 Hardware Reconfiguration 

If a processor needs to communicate with another 
processor at  a different row, it has to send a packet in 
a column phase. The train loading/unloading model 
used previously is also useful in illustrating the princi- 
ples involved in column communications. More specif- 
ically, we will let car 1 of the train make a turn, from 
the lower segment of a row bus, onto column bus n ,  
car 2 make a turn onto column bus ( n  - l ) ,  and so on. 
For simplicity, we assume that the switches are placed 
near the receiver interfaces so that  the propagation 
delay between a switch and its nearby receiver is al- 
most negligible. This also implies that  the switches 
are placed D apart from each other. 

Similar to Eq. 2, we can determine the time that 
car k arrives at  switch ( n  - k + 1) to be 

SwitchATvl[(p, R - k + 1) + (7*,  k)] = (2n - l )D  (3 )  

Since the right side of the equation does not contain k, 
every car arrives a t  its turning point at  the same time. 
Therefore, one may set the switches on a row bus to 
"cross" simultaneously and by doing this, the n pack- 
ets in the train are switched onto their respective des- 
tination columns, one packet per each column. This 
arrangement implies that during a Column phase, two 
or more processors a t  the same row can not send pack- 
ets destined t o  the same column. 

If p ( i ,  j )  needs to communicate with p ( r ,  k) where 
T # i, p ( i , j )  will have to transmit (or load) a packet 
into car ( n  - k + 1). We can determine the time for 
p ( i , j )  to transmit its packet to be 

ColSend[(i , j)  - ( T ,  k)] = ( n  - k ) D  + ( n  - j ) D  
= (an-  j - k ) D  (4) 

By separating the adjacent row buses by D ,  a col- 
umn bus will look like a row bus that is turned 90" 
anti-clockwise after the packets are switched. More 
specifically, that every row bus switches a packet onto 
a column bus a t  the same time is similar to the case 
where packets are transmitted to a row bus simulta- 
neously. With as much as D separation between every 
two row buses, there will be again a train of n cars, 
each carrying a packet, formed on the left segment of 
a column bus. Hence, we can determine the time for 
p ( r , k )  to pick up the packet a t  the its receiver inter- 
face on the column bus, which is sent by p ( i ,  j ) ,  to 
be 

2.3 Connectivity and Complexity 

Software reconfiguration can be performed with 
little control overhead because each of the above equa- 
tions (1 to 5 )  involves simple arit,hmetic calculations. 
In addition, the hardware complexity of the proposed 
architecture is low because each processor uses only 
one two-state 2 x 2 switch and has only one transmit- 
ter. Although two receiver interfaces are needed by 
each processor, a single high-speed electronic receiv- 
ing circuit may be shared among these two interfaces. 
As a comparison, most mesh-based reconfigurable ar- 
chitectures would require at least an equal number of 
switches having four or more states and four 1 /0  in- 
terfaces per each processor [7]. 

Despite of the low control and hardware complexi- 
ties, the RASOB provides strong connectivities due to 
the following characteristics. First, a direct connection 
between any two processors can be established. Sec- 
ond, reconfiguration is flexible as one may interleave 
Row and Column phases in many ways to provide com- 
munication bandwidth required by an application. Fi- 
nally, because only a portion of optical power is tapped 
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off a t  each receiver interface, mult icast ing can be sup- 
ported simply by programming multiple receivers to 
receive at  different points of time during the same 
phase. Noting that one-to-one and broadcast are spe- 
cial cases of multicasting, we may summarize the com- 
munication capability of the RASOB below: 

All processors a t  row i can multicast to the 
processors at the same row a t  the same time; 
and such an row-to-row multicasting can be per- 
formed a t  all n rows simultaneously. 

All processors at column j can multicast to the 
processors a t  the same column at  the same time; 
and such an column-to-column multicasting can 
be performed a t  all n columns simultaneously. 

p(i, j) can multicast to several processors a t  any 
column k and such a processor-to-column multi- 
casting can be performed by all the n3 processors 
a t  the same time. 

Note that while the first two items on the list 
alone mean that the RASOB is at least as power- 
ful as any mesh with row and column buses, the third 
item clearly shows that the RASOB has a stronger 
connectivity than other meshes with row and column 
buses. 

3 Parallel Image Processing 
Algorithms 

Although the RASOB has a strong connectivity, 
it ,  like many practically scalable architectures, has 
a weaker connectivity than a completely-connected 
network. The capabilities as well as restrictions of 
the architecture makes it an interesting yet challeng- 
ing task to design efficient algorithms. In this Sec- 
tion, we present the design and analysis of various 
fundamental algorithms in image and vision process- 
ing. Image and vision computing is usually modeled 
as a three-stage process: low-level, intermediate-level. 
and high-level. In the following subsections, we will 
present two-dimensional convolution and histogram 
operations (low-level), connected component labeling 
(intermediate-level), and extreme point identification 
and diameter computation (high-level). 

3.1 Convolution 

Convolution is frequently used in various image 
processing applications including in the design of lin- 
ear filters (applied in noise cleaning and quality en- 
hancement) as well as in edge detection. The two- 
dimensional convolution y i , j  can be expressed through 
the formula: 

k-lk-1 

Y i , j  = c W , , t Z i - s , j - t  
s=o t = O  

where k’ is the size of the convolution kernel W ( k  x k )  
and k is odd. 

Two-dimensional convolution has been shown to 
be optimal on meshes [14]. M .  Maresca and H .  Li had 
also shown the mesh embedding in polymorphic torus 
architecture [15]. The algorithms they used can also 
be applied in R A S O B ,  which takes O ( k 2 )  communi- 
cation phases and O ( k 3 )  computation time. However, 
these algorithms do not fully utilized the connectiv- 
ity of RASOB.  In order to make a better utilization, 
we propose another algorithm here, which takes k + 1 
communication phases, and with O ( k 2 )  computation 
time on each processor. 

We assume that  the image X of size n x n pixels is 
stored in the RASOB of size n x n,  with each processor 
storing one pixel. Initially, the convolution kernel W 
of size k x k is stored in an array-form inside each PES. 

The algorit!hm of convolution is presented as fol- 
lows: 

Each P E  sends its element to its ( k  - 1)/2 left 
neighboring PES and to its ( k  - l ) / 2  right neigh- 
boring PES on the same row as illustrated in Fig- 
ure 4. 

Each P E  now have k elements. For each PE,  
broadcast all k elements to  its neighboring (k - 
1)/2 upper PES and to  its (k - 1)/2 lower PES in 
the same column. 

Each PE performs the computation locally (to 
perform the above formula). 

Figure 4: Step 1 of the algorithm in case of n = 6 and 
k = 3. 

Theorem 1 The convolut ion can be done using k + 1 
communica t ion  phases .  

Proof: It is not difficult to prove the above theo- 
rem. Step 1 can be done by one row phase. In step 2, 
each P E  has to send k elements. So it takes k co lumn  
phases. Step 3 involves local computation, which it 
can be easily seen that the formula requires k z  addi- 
tions. Thus, k + 1 communication phases and O ( k 2 )  
computation time are required. 

3.2 Histogramming 

The histogram of an image i s  a one-dimensional 
array h[ i ] ,  i = 0 , .  . . , L-1, such that h( i )  is the number 

378 



of pixels with value i. Histogram algorithms had been 
well developed in mesh, reconfigurable mesh, tree or 
hypercube. The algorithm on RASOB is similar to  
the algorithm implemented on a reconfigurable mesh, 
which takes O(L1ogn) time [15]. 

If processor 
p(;c,y) contains the value i, it makes a signal of 1; 
otherwise, makes a signal of 0. Then, perforni a sum 

The algorithm works as follows. 

011 all the signals from the PES will 
as detailed below. 

Algorithm 

f o r ( i  = 0; i < L ;  i + +) 

for each P E  
{ 

if (value == i) 

else 

h[i] = sum(V0TE);  

VOTE 

VOTE 

1 
Theorem 2 T h e  t i m e  complexzty  
o n  a n  RASOB is O(L1ogn). 

get the h[i] values 

= 1; 

= 0;  

of h i s togramming  

Proof: The complexity is followed by the fact that  
the complexity of performing a sum on the whole 
RASOB is O(log n). Executing the loop L times gives 
a O(L1ogn) time of the whole histogram algorithm. 

3.3 Connected Component Labeling 

Connected component labeling in digital images 
takes as an input an array of pixels Xi , j  (where 
each pixel can be binary, gray level, or coloi:), with 
i ,  j = 1 , 2 , 3 ,  . . . , n ,  and produce as an output an array 
of labels L i , j ,  such that  all the elements of 1: corre- 
spond to  a connected component if they are directly 
connected or if they are directly connected to  a pix- 
els belonging to  the same connected component. Two 
pixels are directly connected if they are adjacent [i.e., 
a t  address ( i , j )  and ( i , j f l )  or ( i , j )  and ( ik l . j ) ]  and 
have the same value (gray level or color). The labels 
are assigned to  the connected components according 
to the following rule: each pixel is given a label cor- 
responding to  the least  address (in row major order) 
of the pixels belonging to  its component. Originally, 
each PE has the label of its own address. 

Some research on the implementation of con- 
nected component labeling on Polymorphic torus ar- 
chitecture has been shown in [9], which takes O(1ogn) 
time complexity. However, this complexity carries 
a large constant term. A second one was proposed 
in [15], with a smaller constant term, but with a 
O(log2 n)  time complexity. The best one so far is [ll], 
which takes constant time. This algorithm takes two 
advantages of reconfigurable bus networks. The first 
one is that  each P E  can set the connection of its four 

ports to its four neighboring PES, and hence it can 
break down the whole architecture in any kinds of sub- 
buses as it requires. Next, each PE can read all bus 
lines through its input buffers, and can write on the 
bus whenever that  port is connected. Such technical 
features are not found on RASOB,  and thus cannot 
be directly applied. 

In this section, we proposed a O(1ogn) time com- 
plexity algorithm for connected component labeling on 
RASOB,  with a small constant and some local com- 
putation. The idea of our algorithm follows that  of 
the mesh algorithm suggested in [lo], with time com- 
plexity O(n) for a n x n image on n x n PES. The 
improvement of the time complexity on RASOB is 
due to its strong connectivity. 

The algorithms follows a bottom-up, divide-and- 
conquer strategy in that  it applies the same proce- 
dure to  larger and larger regions, starting from single 
pixel regions and increasing the size up to the entire 
image. Pairs of regions are combined to  form larger 
regions. The combination process happens both hor- 
izontally and vertically. Vertical combinations merge 
two square regions of size h x h to form a rectangle 
of size 2h x h ,  whereas horizontal combinations merge 
two rectangles of size 2h x h to form a square of size 
2h x 2h as shown in Figure 5 .  

F h -  2h+ 

0 0 0 0  TI: T 2h 0 0 0 0  
2h 

l o  0 l o  0 0 0 

Figure 5 :  Image partitioning in connected component 
labeling. 

The algorithm starts by examining all the pixels 
in parallel. Single pixels are considered square regions 
of size 1 and therefore the first combination is vertical, 
to form a rectangle of size 2 x 1. Then, horizontal and 
vertical combinations repeat alternatively until the en- 
tire image is reached. In each combination, either hor- 
izontal or vertical, two procedures will be carried out, 
namely C o m b i n e ( )  and Update(). The C o m b i n e ( )  and 
Update()  routines are described as follows. 

C o m  bz n e 0: 
For each pair of PES crossing the boundary of each 

region to  be merged, if they have the same value (gray 
level or color), a packet is created in both PES. The 
packet is in the form of (large-label, small-label)  where 
large-label is the label of the PE with a larger label, 
and small-label is the label of the other PE. 

If they do not have the same value, they do noth- 
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ing, i.e., create n o  packet. 
/* end of Combine() */  

So far, it is checked completely for any connected 
component crossing t,he boundary. We need now to 
update the labels to the whole region, by the packet 
just created in the Combine() routine: 

Update(): (for vertical combination) 

1. Each P E  on the boundary will now broadcast its 
own packet (if any) to  all PES on the same column 
in its own region as illustrated by Figure 6. 
/* Now, all PES in the same column of the same 
region will contain the same packet. */ 

2. Each P E  broadcasts its own packet to all other 
PES in the same row of the same region. 
/* Now, each PE will receive a t  most L different 
packets, where k is the length of the boundary. 
*/ 

3.  Locally, each P E  checks its own label against the 
packets it just received by the following rule: 
for each different packet (first-label, second-label) 
received, 
if (own-label == first-label) 
then 
own-label = second-label; 

/* end of Update() */ 

Figure 6: Directions of broadcasts to cover the whole 
region. 

The case of horizontal combination is similar, just 
change the row phase to column and the column to  
row. 

Now, the whole region is updated, thus can start an- 
other combination of a larger area. 

After one vertical and one horizontal combination, 
the size of region will be multiplied by 4, i.e. from 
h x h to 2h x 2h. The number of such iteration is 
logn. ( h  = 1 , 2 , 4 , 8 , .  . . , ! I ) .  

Thus, the whole pseudocode of the algorithm can 
be presented as follows: 

f o r (h  = 1; h < lgn; h. + +) 
i 

/* Vertical Combination */ 
Combine(); 
Update() ; 
/*  Horizontal Combination */ 
Combine(); 
Update(); 

Theorem 3 Connected component labeling in an 
RASOB can be done in O(1ogn) time. 

Proof: Combine() procedure involves only one com- 
parison for each P E  on the boundary, and it requires 
one communication phase (either column or row,  de- 
pending on vertical or horizontal Combination). On 
the other hand, Update() procedure requires one col- 
umn phase for step 1 and one row phase for step 2 
for vertical combination. (In case of horizontal com- 
bination, one row phase for step 1 and one column 
phase for step 2). Notice that  this can be done simul- 
taneously for each region. Step 3 only involves local 
computations. The worst case of the number of lo- 
cal computation (comparison between own-label and 
label in packet received) in this step is IC. However, 
in most images, adjacent pixels usually has the same 
value, hence adjacent packets in the boundary usually 
are the same, which greatly reduced the number of 
different packets in each combination. Besides, some 
of the pairs on the boundary may not have the same 
value. thus create no packet. Thus, the number of 
computation will usually be less than k. 

Therefore, 3 communication phases are required 
in each combination, with at  most IC computations, 
where k is the length of the boundary at that  combi- 
nation. One vertical and one horizontal combination 
together form one iteration. logn iterations are re- 
quired to reach the entire image. Thus, in conclusion, 
6 x logn communication phases and a t  most n com- 
putations are required for the whole connected com- 
ponent labeling algorithm on an RASOB. 

3.4 Extreme Point Identification 

The extreme points of a set of processors S are the 
corners of the smallest convex polygon containing S .  
They basically delimit the convex hull of the set; p(i, j) 
is an extreme point of S if hull(S) f hull(S - p ( i , j ) )  

Our algorithm described below follow closely the 
extreme point identification algorithm for Polymor- 
phic torus [15]. The input to  the algorithm is a binary 
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image S i , j  , with i, j = 1,2,. . . n,  stored one pixel per 
processor in an n x n RASOB. At the end of the al- 
gorithm. p(  l ,  m) is equal to l if p (  l ,  m) is an extreme 
point of S. The algorithm is divided in two sections, 
the first is for the left extreme points (LEP),  situated 
on the left side of S, and the second is for the right 
extreme points (REP),  situated on the right side of 
S. We will examine only the first section, concerned 
with the LEPs, considering that the REP sectmion can 
be organized in an analogous way. 

The first part of the algorithm for finding LEPs 
is to identify all possible left extreme points (PLEPs), 
which are the leftmost PES having value 1 in each 
row. The second part is to discard those PLEPs 
which are not true left extreme points. The method 
to do this is based on some mathematical theories. 
Here, we just give some basic ideas. It is done by 
computing, for each P L E P i ,  of row i, the angles 
Ai,j, i = 0,1, . . . , n-1, between the horizontal axis and 
the lines connecting P L E P i  and P L E P j ,  as shown 
in Figure 7. For each P L E P i ,  the maximum and 
the minimum among Ai,j ,j = 0 , 1 , .  . . , n - 1 are then 
found and their difference is computed. If the differ- 
ence is less than or equal to 180 degrees, then PLEPi  
is a true LEP; otherwise, it is discarded, as shown in 
Figure 8. 

I d PLEP4 

PLEP, 

Figure 7: Computation to discard PLEPs 

Before presenting the algorithm for finding LEPs, 
let us introduce a subroutine, find-PLEP(), which 
identify all possible left extreme points (PLEP).  

Lemma: The subroutine find-PLEP() can be imple- 
mented using just one row communication phase. 

Proof: It can be done as follows. For each PE hav- 
ing a 1 in row i, sends a signal to all PES on its right 
hand side in row i. The one which has an 1 but not 
receiving any signal is the PLEPi. 

Now, we can present the algorithm for le f t  extreme 
point identification. 

1. Identify all PLEPs. 

2. All PES corresponding to PLEPi broadca.st their 

3. Each diagonal processor ( p ( i , i ) , i  = 1 , 2 , .  . . , n )  

coordinates to all processors in row i. 

P 

Figure 8: Example of true and false extreme points 

broadcasts the coordinates just received to all the 
processors in the same column. 

4. All p ( i , j )  which contain the coordinates of both 
PLEPi and PLEPj compute the angle A i j  locally 
for all i , j  (i.e. for all PES). 

5 .  Find the maxima and minima among the A i j  for 
each j over all the i, and store the result in p ( n ,  j ) .  

6. Perform a subtraction between the two values just 
received in p ( n ,  j )  locally. 

7. The result is sent to the original position where 
P L E P j  has been found. 

Theorem 4 The overall complexity of left extreme 
point identification in RASOB is O(1). 

Proof: The proof is straight forward. Step 1 takes one 
row phase, by calling the subroutine find-PLEP(), as 
stated in the lemma. Step 2 takes one row phase, and 
step 3 takes one column phase. Step 5 takes constant 
time. Step 6 can be done by one column phase. No- 
tice that after step 6, p ( n , j )  will contain the result of 
whether P L E P j  is a true LEP or not. To sent back 
the results to the PE containing PLEP, ,  one easy way 
is the following. For each j, p ( n ,  j )  broacasts its result 
to all PES in row j .  The PE having PLEP,  will know 
the result, while the other PES can ignore it. 

Identifying the rzghi extreme points can be done in 
the same way. Thus, the overall complexity of extreme 
point identification is O( l) ,  as stated above. 

3.5 Diameter Computation 

The diameter of a component is defined as the 
maximum distance between two of its extreme points. 
For one component, there are at most 2& extreme 
points ( fi LEPs and & REPS). Thus, we have to 
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compute a t  most 4n distances and then find the max- 
imum among them. In the following, we will present 
an O( 1) time algorithm for diameter computation. 

Algorithm 

1. Identify all extreme points; now, each row i will 
have a t  most two a c h e  PES, which contains the 
LEPi and R E A .  

ordinates to all PES in row i. 
2. The two active PES in row i broadcast their co- 

3. P( i ,  i) boardcasts the coordinates it just received 
(at most two) to  all PES in column i. 

4. Each PE computes the distances among all ex- 
treme points locally and finds the maximum. 

5. Find the global maximum. 

Theorem 5 Diameter computation on RASOB 
takes  O( 1) time. 

Proof: The proof is also very straight forward. By 
the extreme point identification algorithm introduced 
in last section, step 1 can be done in constant time. 
Step 2 requires one row phase, and step 3 takes a t  
most two column phases. 

After step 3 ,  p ( i , j )  holds a t  most two LEPs and 
two REPS: LEPi, LEPj,  REPi and REP,. Thus, 
step 4 involves a t  most 6 local computations for each 
PE. Step 5, of course, takes constant time. The global 
maximum found in this step will be the diameter of 
the component. 

Thus, we can find the diameter of a n x n compo- 
nent on a n x n RASOB in O(1) time. 

4 Conclusion 
The reconfigurable array with optical spannzng 

buses ( R A S O B )  architecture is anticipated to become 
one popular parallel architecture due to  its unique 
properties of optical transmission to achieve flexible 
reconfiguration and strong connectivities with a low 
hardware and control complexity. In this paper, we 
took advantage of the unique and powerful properties 
of this architecture for the design and analysis of var- 
ious fundamental image processing applications. The 
algorithms have been chosen to  span a wide range of 
communication demands to  fully assess the potential 
of RASOB. It was shown that most algorithms per- 
form much better on an RASOB than on traditional 
reconfigurable electronic meshes. This is mainly due 
to the pipelining capabilities of the RASOB.  
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